Modeling of CollisionsEditions Scientifiques et Medicales Elsevier, 1998 - 222 من الصفحات |
من داخل الكتاب
النتائج 1-3 من 16
الصفحة 144
... Lemma 12.1 ( ii ) , we have T2 = · Száza × 54- , f'f ' . Bo de ' de ' dw . RdxRdxSd - 1 I2 ૬ And changing the notation ( § ' , E ) to ( § , E * ) , then § is changed into έ ' thanks to Lemma 12.1 ( i ) . Therefore ( we again use ( 12.7 ) ...
... Lemma 12.1 ( ii ) , we have T2 = · Száza × 54- , f'f ' . Bo de ' de ' dw . RdxRdxSd - 1 I2 ૬ And changing the notation ( § ' , E ) to ( § , E * ) , then § is changed into έ ' thanks to Lemma 12.1 ( i ) . Therefore ( we again use ( 12.7 ) ...
الصفحة 196
... Lemma 18.4 2r ( . , t ) > u ( · , t ) u ( , t ) n ( , t ) -a.e . in the sense of positive semidefinite symmetric matrices . Obviously , Lemma 18.4 allows the introduction of a positive semidefinite temperature tensor T : 2r ( x , t ) ...
... Lemma 18.4 2r ( . , t ) > u ( · , t ) u ( , t ) n ( , t ) -a.e . in the sense of positive semidefinite symmetric matrices . Obviously , Lemma 18.4 allows the introduction of a positive semidefinite temperature tensor T : 2r ( x , t ) ...
الصفحة 212
... Lemma 20.3 Let C Rd , d € N , be a bounded domain and let G : [ 0 , ∞ ) → R be locally strictly convex , i.e. Ω 00 ... Lemma 20.3 is the core of the proof of > 0 let ( n ° , po ) be the unique Theorem 20.3 Assume B1 , B2 . For ...
... Lemma 20.3 Let C Rd , d € N , be a bounded domain and let G : [ 0 , ∞ ) → R be locally strictly convex , i.e. Ω 00 ... Lemma 20.3 is the core of the proof of > 0 let ( n ° , po ) be the unique Theorem 20.3 Assume B1 , B2 . For ...
طبعات أخرى - عرض جميع المقتطفات
عبارات ومصطلحات مألوفة
atomic species BBGKY hierarchy Boltzmann Equation Braginskii charge classical collision frequencies collision integrals collision operator collision terms collisional conservation equation Coulomb logarithms Debye length defined diffusion distribution function electric field electron-ion energy equation Enskog equal mass ions equation set equilibrium fluid equations Fokker-Planck Galilean invariance gives heat flux heavy ions hydrodynamic interaction interdiffusion ion species ionic kinetic Landau Lemma limit linear magnetic field Maxwellian distributions Maxwellian estimate mean velocity multi-fluid equations neutral plasma numerical obtained Ohm's law particle Perthame perturbation calculation perturbation equations Phys Plasma Physics quantum Quantum Hydrodynamics Raß relative velocity scalar self-collision T₁ tensor Theorem thermal transport coefficients transport equations U₂ vector viscosity Vlasov Equation Wigner Yaß αβ მა