Modeling of CollisionsEditions Scientifiques et Medicales Elsevier, 1998 - 222 من الصفحات |
من داخل الكتاب
النتائج 1-3 من 66
الصفحة 16
Hydrodynamics and concentrations Let's define the mass density p , the mass concentrations ca and the mean velocity u of the plasma ( electron mass is neglected ) : p = Σmana , ca = a mana ρ " ( Σca = 1 , a at 1 , u = Σ მ JP + V ( pu ) ...
Hydrodynamics and concentrations Let's define the mass density p , the mass concentrations ca and the mean velocity u of the plasma ( electron mass is neglected ) : p = Σmana , ca = a mana ρ " ( Σca = 1 , a at 1 , u = Σ მ JP + V ( pu ) ...
الصفحة 63
The equal mass case is specially easy to treat . 5.1 Equal mass ions Consider ionic species a , b , with equal masses , or at least very close ones . For a first perturbation order calculation , we put in addition equal temperatures ...
The equal mass case is specially easy to treat . 5.1 Equal mass ions Consider ionic species a , b , with equal masses , or at least very close ones . For a first perturbation order calculation , we put in addition equal temperatures ...
الصفحة 73
... บ To · ( u¡ − u ) = 0 - nb va = 7.3 Equal mass ions Let's consider ionic species a , b , with equal masses , or at least very close ones . For a first order perturbation calculation , we put in addition that temperatures are equal ...
... บ To · ( u¡ − u ) = 0 - nb va = 7.3 Equal mass ions Let's consider ionic species a , b , with equal masses , or at least very close ones . For a first order perturbation calculation , we put in addition that temperatures are equal ...
ما يقوله الناس - كتابة مراجعة
لم نعثر على أي مراجعات في الأماكن المعتادة.
طبعات أخرى - عرض جميع المقتطفات
عبارات ومصطلحات مألوفة
appear approximation assumed atomic average Boltzmann Equation calculation chapter charge classical close collision frequencies collision terms collisional computed conservation consider correct corresponding Coulomb logarithms coupled defined density depend diffusion distribution function effect electrons energy equal equilibrium existence expressions finally fluid flux formula frame given gives heat heavy hydrodynamic initial integrals interaction ion species ionic kinetic light limit linear mass Maxwellian mean mean velocity minimizer momentum multi-fluid neutral Note numerical obtained operator parameter particle particular perturbation perturbation equations Phys physics plasma pressure problem properties quantities quantum quantum mechanical reduced reference relations relative satisfies scalar single solution solved temperature tensor theory thermal transport coefficients transport equations vector αβ