Modeling of CollisionsEditions Scientifiques et Medicales Elsevier, 1998 - 222 من الصفحات |
من داخل الكتاب
النتائج 1-3 من 24
الصفحة 38
They must be small , so we have two other sets of small parameters , scalars and vectors : Ta Ma λα Ta - TB ( ma + m2 ) ... The small parameter ep is ( Ta - TB ) / ( Ta + T3 ) if masses are about equal , but it is for instance for an ...
They must be small , so we have two other sets of small parameters , scalars and vectors : Ta Ma λα Ta - TB ( ma + m2 ) ... The small parameter ep is ( Ta - TB ) / ( Ta + T3 ) if masses are about equal , but it is for instance for an ...
الصفحة 133
Vab = At first sight , the parameter 1 b2maz η = 4 no ZZZ Ze1 ln ^ ab е a = √ = = + 1/2 T = can take any value from -1 to 1. Let's show that it is in practice positive and close to 0. Develop first nan , ZZ { ( InAs ) - InaalnAss } η ...
Vab = At first sight , the parameter 1 b2maz η = 4 no ZZZ Ze1 ln ^ ab е a = √ = = + 1/2 T = can take any value from -1 to 1. Let's show that it is in practice positive and close to 0. Develop first nan , ZZ { ( InAs ) - InaalnAss } η ...
الصفحة 161
The corresponding Boltzmann equation , which we describe later is still Ətf + Vxf = Q8 ( ƒ ) ( t , x , § , I ) , E · ( 14.3 ) and the parameter 6 : = 8 ( 7 ) will be chosen so as to generate the pressure law ( 14.1 ) in the Euler limit ...
The corresponding Boltzmann equation , which we describe later is still Ətf + Vxf = Q8 ( ƒ ) ( t , x , § , I ) , E · ( 14.3 ) and the parameter 6 : = 8 ( 7 ) will be chosen so as to generate the pressure law ( 14.1 ) in the Euler limit ...
ما يقوله الناس - كتابة مراجعة
لم نعثر على أي مراجعات في الأماكن المعتادة.
طبعات أخرى - عرض جميع المقتطفات
عبارات ومصطلحات مألوفة
appear approximation assumed atomic average Boltzmann Equation calculation chapter charge classical close collision frequencies collision terms collisional computed conservation consider correct corresponding Coulomb logarithms coupled defined density depend diffusion distribution function effect electrons energy equal equilibrium existence expressions finally fluid flux formula frame given gives heat heavy hydrodynamic initial integrals interaction ion species ionic kinetic light limit linear mass Maxwellian mean mean velocity minimizer momentum multi-fluid neutral Note numerical obtained operator parameter particle particular perturbation perturbation equations Phys physics plasma pressure problem properties quantities quantum quantum mechanical reduced reference relations relative satisfies scalar single solution solved temperature tensor theory thermal transport coefficients transport equations vector αβ