Modeling of CollisionsEditions Scientifiques et Medicales Elsevier, 1998 - 222 من الصفحات |
من داخل الكتاب
النتائج 1-3 من 17
الصفحة 142
which satisfies ( 12.5 ) is given by ( 12.4 ) for some unit vector w . ... Finally , the collision kernel B in ( 12.2 ) , ( 12.3 ) has to satisfy , as we will see it later , some properties : and at least B≥0 .
which satisfies ( 12.5 ) is given by ( 12.4 ) for some unit vector w . ... Finally , the collision kernel B in ( 12.2 ) , ( 12.3 ) has to satisfy , as we will see it later , some properties : and at least B≥0 .
الصفحة 154
It satisfies , in the distribution sense , a fe + § · Vxfe + Ee · V £ fe = 0 , at Ee ( t , x ) afN Ət = 1 N N Ɛ ( x − xj ( t ) ) - - = 1 = √240208 x 30 E ( x − y ) fe ( t , y , E ) dy dę . - This is exactly the Vlasov Equation .
It satisfies , in the distribution sense , a fe + § · Vxfe + Ee · V £ fe = 0 , at Ee ( t , x ) afN Ət = 1 N N Ɛ ( x − xj ( t ) ) - - = 1 = √240208 x 30 E ( x − y ) fe ( t , y , E ) dy dę . - This is exactly the Vlasov Equation .
الصفحة 155
Then , gå satisfies ( 13.13 ) and ƏgN Ət N + Σ§i · V1,9N + ΣF ( t , x ; ) · Vç , 9N = 0 . i = 1 Laval afi ) at af ( j ) Ət The reason why ( 13.12 ) and ( 13.14 ) are close , which means in principle ƒN 9N , is that , as N → ∞ , E ( N ) ...
Then , gå satisfies ( 13.13 ) and ƏgN Ət N + Σ§i · V1,9N + ΣF ( t , x ; ) · Vç , 9N = 0 . i = 1 Laval afi ) at af ( j ) Ət The reason why ( 13.12 ) and ( 13.14 ) are close , which means in principle ƒN 9N , is that , as N → ∞ , E ( N ) ...
ما يقوله الناس - كتابة مراجعة
لم نعثر على أي مراجعات في الأماكن المعتادة.
طبعات أخرى - عرض جميع المقتطفات
عبارات ومصطلحات مألوفة
atomic species BBGKY hierarchy Boltzmann Equation Braginskii charge classical collision frequencies collision integrals collision operator collision terms collisional conservation equation Coulomb logarithms Debye length defined diffusion distribution function electric field electron-ion energy equation Enskog equal mass ions equation set equilibrium fluid equations Fokker-Planck Galilean invariance gives heat flux heavy ions hydrodynamic interaction interdiffusion ion species ionic kinetic Landau Lemma limit linear magnetic field Maxwellian distributions Maxwellian estimate mean velocity multi-fluid equations neutral plasma numerical obtained Ohm's law particle Perthame perturbation calculation perturbation equations Phys Plasma Physics quantum Quantum Hydrodynamics Raß relative velocity scalar self-collision T₁ tensor Theorem thermal transport coefficients transport equations U₂ vector viscosity Vlasov Equation Wigner Yaß αβ მა