Modeling of CollisionsEditions Scientifiques et Medicales Elsevier, 1998 - 222 من الصفحات |
من داخل الكتاب
النتائج 1-3 من 17
الصفحة 142
which satisfies ( 12.5 ) is given by ( 12.4 ) for some unit vector w . ... Finally , the collision kernel B in ( 12.2 ) , ( 12.3 ) has to satisfy , as we will see it later , some properties : and at least B≥0 .
which satisfies ( 12.5 ) is given by ( 12.4 ) for some unit vector w . ... Finally , the collision kernel B in ( 12.2 ) , ( 12.3 ) has to satisfy , as we will see it later , some properties : and at least B≥0 .
الصفحة 154
It satisfies , in the distribution sense , a fe + § · Vxfe + Ee · V £ fe = 0 , at Ee ( t , x ) afN Ət = 1 N N Ɛ ( x − xj ( t ) ) - - = 1 = √240208 x 30 E ( x − y ) fe ( t , y , E ) dy dę . - This is exactly the Vlasov Equation .
It satisfies , in the distribution sense , a fe + § · Vxfe + Ee · V £ fe = 0 , at Ee ( t , x ) afN Ət = 1 N N Ɛ ( x − xj ( t ) ) - - = 1 = √240208 x 30 E ( x − y ) fe ( t , y , E ) dy dę . - This is exactly the Vlasov Equation .
الصفحة 155
Then , gå satisfies ( 13.13 ) and ƏgN Ət N + Σ§i · V1,9N + ΣF ( t , x ; ) · Vç , 9N = 0 . i = 1 Laval afi ) at af ( j ) Ət The reason why ( 13.12 ) and ( 13.14 ) are close , which means in principle ƒN 9N , is that , as N → ∞ , E ( N ) ...
Then , gå satisfies ( 13.13 ) and ƏgN Ət N + Σ§i · V1,9N + ΣF ( t , x ; ) · Vç , 9N = 0 . i = 1 Laval afi ) at af ( j ) Ət The reason why ( 13.12 ) and ( 13.14 ) are close , which means in principle ƒN 9N , is that , as N → ∞ , E ( N ) ...
ما يقوله الناس - كتابة مراجعة
لم نعثر على أي مراجعات في الأماكن المعتادة.
طبعات أخرى - عرض جميع المقتطفات
عبارات ومصطلحات مألوفة
appear approximation assumed atomic average Boltzmann Equation calculation chapter charge classical close collision frequencies collision terms collisional computed conservation consider correct corresponding Coulomb logarithms coupled defined density depend diffusion distribution function effect electrons energy equal equilibrium existence expressions finally fluid flux formula frame given gives heat heavy hydrodynamic initial integrals interaction ion species ionic kinetic light limit linear mass Maxwellian mean mean velocity minimizer momentum multi-fluid neutral Note numerical obtained operator parameter particle particular perturbation perturbation equations Phys physics plasma pressure problem properties quantities quantum quantum mechanical reduced reference relations relative satisfies scalar single solution solved temperature tensor theory thermal transport coefficients transport equations vector αβ