Modeling of CollisionsGauthier-Villars, 1998 - 222 من الصفحات |
من داخل الكتاب
النتائج 1-3 من 64
الصفحة 58
... gives αα Jó's = -Yaa • fo Ia vEm fm α α Μα dv fm ( a x ' α ах dv fm 4 + XXα fm ( 4-26 ) with the negativity property Jo≤ 0 . Define finally αα Кав = [ -- fm C23v2 dv with the tensor collision term ( 4-24 ) . Integrations by parts give ...
... gives αα Jó's = -Yaa • fo Ia vEm fm α α Μα dv fm ( a x ' α ах dv fm 4 + XXα fm ( 4-26 ) with the negativity property Jo≤ 0 . Define finally αα Кав = [ -- fm C23v2 dv with the tensor collision term ( 4-24 ) . Integrations by parts give ...
الصفحة 89
... gives 3п 32 α0 ( ∞ ) = ~ 0.2945 , Bo ( ∞ ) = 3 128 2,70 ( 00 ) = ≈ 13.58 . 3π Our results for 0 < Z < 1 , which are useful for ionic transport , are new . At the Z0 limit , ao ( 0 ) = 1 ( section 8.2 ) . Our numerical calculation of ...
... gives 3п 32 α0 ( ∞ ) = ~ 0.2945 , Bo ( ∞ ) = 3 128 2,70 ( 00 ) = ≈ 13.58 . 3π Our results for 0 < Z < 1 , which are useful for ionic transport , are new . At the Z0 limit , ao ( 0 ) = 1 ( section 8.2 ) . Our numerical calculation of ...
الصفحة 172
... gives the conservation of mass . The second component is obtained for K. It gives 1 [ ( § - E. , w ) + Y ( E — E. , w ) w [ feqw · Vzƒeq + feqw · Vzfeq ] dλ h - ( § · 1 = w ) { div z / ( { = { .. W ) 2 , Y feq feq w ® wdl - + = ¦ V2 [ Y ...
... gives the conservation of mass . The second component is obtained for K. It gives 1 [ ( § - E. , w ) + Y ( E — E. , w ) w [ feqw · Vzƒeq + feqw · Vzfeq ] dλ h - ( § · 1 = w ) { div z / ( { = { .. W ) 2 , Y feq feq w ® wdl - + = ¦ V2 [ Y ...
طبعات أخرى - عرض جميع المقتطفات
عبارات ومصطلحات مألوفة
appear approximation assumed atomic average Boltzmann Equation calculation chapter charge classical close collision frequencies collision terms collisional computed conservation consider correct Coulomb logarithms coupled defined density depend developed diffusion distribution function effect electrons energy equal equilibrium estimate existence expressions finally fluid flux formula frame given gives heat heavy hydrodynamic integrals interaction ion species ionic kinetic light limit linear mass Maxwellian mean mean velocity momentum multi-fluid neutral Note numerical obtained operator parameter particle particular perturbation perturbation equations Phys physics plasma pressure problem properties quantities quantum quantum mechanical reduced reference relations relative satisfies scalar single solution solved temperature tensor theory thermal transport coefficients transport equations vector αβ Μα