Modeling of CollisionsGauthier-Villars, 1998 - 222 من الصفحات |
من داخل الكتاب
النتائج 1-3 من 14
الصفحة 17
... solved " by hand " yielding CaCs ( Ua — Us ) = Ca ( U2 — U ) = —Ñ¿ ( Us – u ) = Cac3 ( G. - — — состо Vab Another simple case is when collision frequencies factorize3 as - Gb ) . Dab = cb Ya Yo ; the solution is then - Yo 1 ( U. - u ) ...
... solved " by hand " yielding CaCs ( Ua — Us ) = Ca ( U2 — U ) = —Ñ¿ ( Us – u ) = Cac3 ( G. - — — состо Vab Another simple case is when collision frequencies factorize3 as - Gb ) . Dab = cb Ya Yo ; the solution is then - Yo 1 ( U. - u ) ...
الصفحة 65
... solved : w w4 dw Em • ∞ - ( 02-3 ) m . 60 ° - 66 % = -Xabm { [ " _du - w1 ( 1 - Em ) dw } - 72 % ( w2 - 3 ) m Conditions ( 4-33 ) yield Em w2 & m dw = 0 , 3Tab + Xab and so the transport equation seeked Qab = 18√√ ∞ w om dw Jo Em Em ...
... solved : w w4 dw Em • ∞ - ( 02-3 ) m . 60 ° - 66 % = -Xabm { [ " _du - w1 ( 1 - Em ) dw } - 72 % ( w2 - 3 ) m Conditions ( 4-33 ) yield Em w2 & m dw = 0 , 3Tab + Xab and so the transport equation seeked Qab = 18√√ ∞ w om dw Jo Em Em ...
الصفحة 78
... solved to get vectorial transport coefficients are , depending on the case , ( 6-6 ) or ( 7-9 ) 1 მ -C w3 dw Z√2wom ( w ) w3 = { – ( 1 + Z√2 ) ( w2 – 5 ) wóm ( w ) www.davi Z \ [ OE ( Z , W ) OT ( Z , w ) ( 8-1 ) Z € [ 0 ...
... solved to get vectorial transport coefficients are , depending on the case , ( 6-6 ) or ( 7-9 ) 1 მ -C w3 dw Z√2wom ( w ) w3 = { – ( 1 + Z√2 ) ( w2 – 5 ) wóm ( w ) www.davi Z \ [ OE ( Z , W ) OT ( Z , w ) ( 8-1 ) Z € [ 0 ...
طبعات أخرى - عرض جميع المقتطفات
عبارات ومصطلحات مألوفة
appear approximation assumed atomic average Boltzmann Equation calculation chapter charge classical close collision frequencies collision terms collisional computed conservation consider correct Coulomb logarithms coupled defined density depend developed diffusion distribution function effect electrons energy equal equilibrium estimate existence expressions finally fluid flux formula frame given gives heat heavy hydrodynamic integrals interaction ion species ionic kinetic light limit linear mass Maxwellian mean mean velocity momentum multi-fluid neutral Note numerical obtained operator parameter particle particular perturbation perturbation equations Phys physics plasma pressure problem properties quantities quantum quantum mechanical reduced reference relations relative satisfies scalar single solution solved temperature tensor theory thermal transport coefficients transport equations vector αβ Μα